Dopamine regulation of renal Na+,K(+)-ATPase activity is lacking in Dahl salt-sensitive rats.

نویسندگان

  • A Nishi
  • A C Eklöf
  • A M Bertorello
  • A Aperia
چکیده

Dopamine is a natriuretic hormone that acts by inhibiting tubular Na+, K(+)-ATPase activity by activation of the dopamine-1 receptor (the thick ascending limb [TAL] of Henle) or by a synergistic effect of dopamine-1 and dopamine-2 receptors (the proximal tubule). The dopamine-1 receptor is coupled to adenylate cyclase. In this article we show that prehypertensive Dahl salt-sensitive (DS) rats have a blunted natriuretic response to dopamine determined during euvolemic conditions compared with Dahl salt-resistant (DR) rats. Furthermore, we have examined the renal tubular effects of dopamine in DS and DR rats. Basal Na+,K(+)-ATPase activity was similar in DS and DR rats. In proximal tubule, dopamine (10(-5) M) inhibited Na+,K(+)-ATPase activity in DR but not in DS rats. The dopamine-2 agonist LY171555 (10(-5) M) together with dibutyryl cyclic AMP (10(-6) M) inhibited proximal tubule Na+,K(+)-ATPase activity in both DS and DR rats. LY171555 alone had no effect. In TAL, the dopamine-1 agonist fenoldopam (10(-5) M) inhibited Na+,K(+)-ATPase activity in DR but not in DS rats. Dibutyryl cyclic AMP (10(-5) M) inhibited TAL Na+,K(+)-ATPase activity in both DS and DR rats. In cell suspensions from the cortex and the medulla, activation of the dopamine-1 receptor significantly increased cyclic AMP content in DR but not in DS rats. The results indicate that DS rats lack the capacity to inhibit tubular Na+,K(+)-ATPase activity because of a defective dopamine-1 receptor adenylate cyclase coupling. This defect may contribute to the impaired natriuretic capacity in DS rats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impairment of Na/K-ATPase signaling in renal proximal tubule contributes to Dahl salt-sensitive hypertension.

We have observed that, in renal proximal tubular cells, cardiotonic steroids such as ouabain in vitro signal through Na/K-ATPase, which results in inhibition of transepithelial (22)Na(+) transport by redistributing Na/K-ATPase and NHE3. In the present study, we investigate the role of Na/K-ATPase signaling in renal sodium excretion and blood pressure regulation in vivo. In Sprague-Dawley rats, ...

متن کامل

Oxidative stress causes renal dopamine D1 receptor dysfunction and salt-sensitive hypertension in Sprague-Dawley rats.

Renal dopamine plays an important role in maintaining sodium homeostasis and blood pressure (BP) during increased sodium intake. The present study was carried out to determine whether renal dopamine D1 receptor (D1R) dysfunction contributes to increase in salt sensitivity during oxidative stress. Male Sprague-Dawley rats, divided into various groups, received tap water (vehicle); 1% NaCl (high ...

متن کامل

Aminopeptidase N reduces basolateral Na+ -K+ -ATPase in proximal tubule cells.

Aminopeptidase N/CD13 (Anpep) is a membrane-bound protein that catalyzes the formation of natriuretic hexapeptide angiotensin IV (ANG IV) from ANG III. We previously reported that Anpep is more highly expressed in the kidneys of Dahl salt-resistant (SR/Jr) than salt-sensitive (SS/Jr) rats, Anpep maps to a quantitative trait locus for hypertension, and that the Dahl SR/Jr rat contains a function...

متن کامل

Prolactin and dopamine 1-like receptor interaction in renal proximal tubular cells.

Prolactin is a natriuretic hormone and acts by inhibiting the activity of renal tubular Na(+)-K(+)-ATPase activity. These effects require an intact renal dopamine system. Here, we have studied by which mechanism prolactin and dopamine interact in Sprague-Dawley rat renal tissue. Na(+)-K(+)-ATPase activity was measured as ouabain-sensitive ATP hydrolysis in microdissected renal proximal tubular ...

متن کامل

Renal Na+-K+-ATPase in Okamoto and Dahl hypertensive rats.

Plasma renin activity (PRA, ng AI/ml/hr), plasma aldosterone (PA, ng%) and renal Na+-K+-ATPase (micron m PO 4/mg protein/hr) were measured in tow groups of eight spontaneously hypertensive rats (SHR), two groups of eight Dahl salt hypertensive rats (SS), and their controls (16 normal Wistar and 16 salt-resistant rats). Measurements were made in one group after 2 weeks on a normal (0.48% sodium)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 21 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1993